Deliverable 4: Assessment of minimum response capacities

Funded by the European Union

This document was produced with the financial assistance of the European Union. Its content is the sole responsibility of the author(s). The views expressed herein can in no way be taken to reflect the official opinion of the European Union.

The project is funded by the European Union via the Technical Support Instrument, managed by the European Commission Directorate-General for Structural Reform Support.

This report has been delivered in May 2023, under the EC Contract No. REFORM/2021/ OP/0006. It has been delivered as part of the project "Strategic Reserve of essential and strategic resources based on Industrial Capabilities (RECAPI)".

© European Union, 2025

The Commission's reuse policy is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39 – https://eur-lex. europa.eu/eli/dec/2011/833/oj).

Unless otherwise noted, the reuse of this document is authorised under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed, provided that appropriate credit is given and any changes are indicated.

Directorate-General for Structural Reform Support

REFORM@ec.europa.eu +32 2 299 11 11 (Commission switchboard) European Commission Rue de la Loi 170 / Wetstraat 170 1049 Brussels, Belgium

Deliverable 4: Assessment of minimum response capacities

12 May 2023

Contents

1. [RECAP] Deliverable 3 results

- 2. National consumption at risk approach
- 3. Resilience mechanisms framework
- 4. Application of resilience mechanisms framework: Preliminary lever
- 5. Application of resilience mechanisms framework: Minimum capacities

Executive Summary – [RECAP] Deliverable 3 results

- As part of Deliverable 3, a methodology was developed to identify critical products and the level of supply risk associated. The methodology is divided in three main steps:
 - 1. Identification of critical products, centered around the core concepts of individual survival, national survival and economic importance
 - 2. Analysis of foreign dependence, understood as the share of national consumption dependent on foreign imports
 - Analysis of direct supply risk, defined as the intersection between supply origin (level of economic integration between Spain and the country of origin) and supply concentration (number of supplier countries and respective share of total imports) of foreign imports
- This methodology was applied to 4 strategic sectors: Defense, Energy, Health and Agriculture. Using international trade data, the results (out of the 6.554 products¹) were the following:
 - 1. 434 critical products identified; of which
 - 2. 194 directly dependent products; of which
 - 3. 27 high risk products, 42 medium risk products and 125 low risk products
- The focus of the current deliverable will be in quantifying the national consumption that is at risk for the 69 critical products of high/ medium risk (27 high risk + 42 medium risk) and establishing a series of mechanisms to increase resilience

^{1.} Total products in Harmonized System trade/ customs classification

[RECAP] The application of methodology results in 194 dependent products and 69 with high to medium direct supply chain risk

Application of methodology and #HS6 products

Contents

1. [RECAP] Deliverable 3 results

2. National consumption at risk approach

- 3. Resilience mechanisms framework
- 4. Application of resilience mechanisms framework: Preliminary lever
- 5. Application of resilience mechanisms framework: Minimum capacities

Executive Summary – National consumption at risk approach

- With the goal of quantifying the risk associated to the supply of the 69 critical products of high/ medium risk, a "national consumption at risk approach" has been developed
- National consumption at risk is understood as the amount of domestic consumption that Spain could stop having access to in case of supply chain disruption
- The quantification of the national consumption at risk allows to measure Spain's dependency for the 69 critical products of high/ medium risk and helps prioritizing efforts in Spain's to reduce detected dependencies and increase resilience
- The national consumption at risk approach consists of 3 key steps:

0. Identification and geolocalization of existing industrial capacities: the potential manufacturers of critical products of high/ medium risk have been geo-localized within Spain. This could help in case actions such as reinforcement or reconversion of manufacturing capacity for these products are considered

1. Calculation of consumption at risk: the amount of Spain's consumption that could be at risk in case of supply chain disruption has been quantified, considering imports of high/ medium risk (from now on "imports at risk") vulnerable. The process for calculating national consumption at risk for each specific product is as follows:

- In case imports at risk are lower than net imports, national consumption at risk is equal to imports at risk
- In case imports at risk are greater than net imports, national consumption at risk is equal to net imports

The calculation results in 42 Bn€ of consumption at risk (for the 69 products of high/ medium risk), out of which:

- 4 products, representing 33 Bn€ of consumption at risk, are not the object as this project as they refer to oil and natural gas-related products (i.e. industrial manufacturing capacities not replicable in Spain)
- 65 products, representing 9 Bn€ of consumption at risk, are the focus for the application of the resilience mechanism framework defined in next section of this document

2. Preparation of ranking based of national consumption at risk: 65 products have been ordered according to consumption at risk in order to represent Spain's dependance for each critical product of high/ medium risk

3-step framework for determining national consumption at risk

Identify and geolocate existing industrial capacities Identify who and where in Spain critical products are manufactured

Calculate "consumption at risk" (i.e., net imports at risk) Quantify dependency on risky net imports for national consumption

Prepare a *ranking* based on the quantification of "consumption at risk"

Establish an order of priority according to net imports at risk

OMethodology for geolocation of existing industrial capacities

ILLUSTRATIVE

	Selection of a critical material	Matching with CNAE codes	Identification of companies with such CNAE codes	Geolocation of companies through their headquarters
Source	Methodology of Deliverable 3	Expert input	SABI – <i>Regis</i>	stro Mercantil ¹
Illustrative example	Fertilizers	2015 - Manufacture of fertilizers	 TIMAC Agro España Herogra Fertilizantes SA 	Visualization directly in the tool (PowerBI)

- Each critical material is considered manufactured at the headquarters locations of the companies that perform the economic activity (CNAE code) to which such material has been matched
- Approximate estimation to identify existing companies producing similar products which could be reinforced to create additional capacities

OGeolocalization of existing industrial capacities in Spain

Dynamic visualization in PowerBI tool

>

Visualization directly in the tool available

1Consumption at risk approach for prioritizing high risk critical products

>

Context

The consumption at risk approach focuses on the amount of imports that Spain may stop having access to in case of supply chain disruption

Imports coming from highrisk countries are considered vulnerable and act as the main driver for national consumption at risk

Consumption at risk (C_{risk}) approach **Formula** If $\{ \begin{array}{ll} Imports_{H/M} < NI \rightarrow C_{risk} = Imports_{H/M} \\ Imports_{H/M} > NI \rightarrow C_{risk} = NI \end{array} \}$ where $Imports_{H/M}$ is imports of high or medium risk and NI are net imports Kev Exports' risk profile is independent from imports' risk profile assumption Low risk High & medium risk Graphic Net imports representation Exports Selected Imports (case 1) Imports (case 2) Selected

1 Consumption at risk approach results

Classification and quantification process ...

... and results obtained

Total consumption at risk

69 products

Note: Oil and derivatives and natural gas will not be addressed due to the impossibility to build national capacities on them in Spain

2Ranking based on consumption at risk

Consumption at risk¹, Bn€

Total consumption at risk (~9B€) of 65 critical high/ medium risk products must be addressed through resilience mechanisms such as diversification, stockpiling or building of national capacities

1. Calculated as weighted average of 2018, 2019 and 2021 consumption

2. Includes critical 57 products

Note: Excludes oil and derivatives and natural gas (4 products) due to the impossibility to build national capacities on them in Spain. Names have been shortened due to representation purposes

Contents

- 1. [RECAP] Deliverable 3 results
- 2. National consumption at risk approach
- **3. Resilience mechanisms framework**
- 4. Application of resilience mechanisms framework: Preliminary lever
- 5. Application of resilience mechanisms framework: Minimum capacities

Executive Summary – Resilience mechanisms framework

- A resilience mechanisms framework has been developed in order to evaluate potential lines of action that could be taken to reduce the national consumption at risk (9.100 M€) of the 65 critical products of high/ medium risk identified in the previous section
- The framework includes:
 - Preliminary lever, namely: Alternative sources of supply
 - Prior to putting in place minimum capacities mechanisms, a diversification analysis is carried out, as Spain could reduce national consumption at risk by merely starting to import (or promoting further imports) from lower-risk countries
 - Minimum capacities mechanisms: for those products for which diversification is not enough (i.e. products that continue being high or medium risk after diversification potential), minimum capacities mechanisms must be put in place, these are (ordered by difficulty of intervention):
 - 1. Capacities that allow a rapid increase of production in a possible crisis situation (i.e. develop ever-warm production lines)
 - 2. Cost effective/efficient storage of the product (i.e. stockpiling)
 - Last-resource actions to build national capacities (i.e. develop new domestic production / factories of critical products of high/ medium risk)
 - Possible complementary interventions: additionally to preliminary lever and minimum capacity mechanisms, other actions to increase national resilience could be taken (e.g. stress testing, finding substitutes). These interventions are not object of this document

Methodology for the selection of interventions that could increase the resilience of the supply chain in Spain

[©] This resilience mechanism will be covered in Deliverable 9

Resilience me	chani	sms	Type of intervention	Difficulty of intervention
Preliminary lever	0	Alternative sources of supply	Verify and drive alternative import sources	Low
	1*	Creation of capacities that allow a rapid increase of production in a possible crisis situation	Develop ever-warm production capacities to cope in case of crisis	
Minimum capacities mechanisms	2	Cost effective/efficient storage of the product	Stockpiling	
	3	Last-resource actions to build national capacities	Develop new domestic production capacity	High
Possible complementary interventions		Other mechanisms to increase resilience	Stress testing, finding substitutes, gaining visibility of tier-2 and tier-3 suppliers ¹	

Contents

- 1. [RECAP] Deliverable 3 results
- 2. National consumption at risk approach
- 3. Resilience mechanisms framework

4. Application of resilience mechanisms framework: Preliminary lever

5. Application of resilience mechanisms framework: Minimum capacities

Executive Summary – Application of resilience mechanisms framework: Preliminary lever

- Prior to building minimum capacities in Spain, alternatives sources of supply must be verified to identify cases in which risk of supply of critical products can be reduced by promoting further imports from lower-risk countries
- For that end, it has been assumed that the risk profile of global exports can be achieved. This means that risk associated to origin and concentration of Spain's global imports can match that of global exports
- Diversification analysis has been carried out for the 65 critical products of high/ medium risk (9.100 M€) following the rationale described above. After that, products have been re-categorized again as high, medium or low risk (following the same logic as in Deliverable 3) taking into account the potential for diversification
- Results obtained are:
 - 18 out of 65 products become low risk. This means that diversification would allow to reduce the risk enough for those products to be considered low risk. National consumption at risk of these 18 products is 3.800 M€
 - 47 out of 65 products continue being high or medium risk. This means that diversification would not allow to reduce the risk enough for those products to be considered low risk and other resilience mechanisms must be considered. National consumption at risk of these 47 products is 5.300 M€
- Products that continue being high or medium risk (47) can be classified into several product categories (e.g., starch, primary batteries, nitrogenous fertilizers). 1 product category per strategic sector will be analyzed in-depth in order to provide a detailed example of how minimum capacities mechanisms could work. These product categories are Batteries (Energy sector), Printed circuits (Defense sector), Antibiotics (Health sector) and Fertilizers (Agriculture sector)
- Even though some mechanisms by themselves could be enough to reduce the risk for some products (e.g., stockpiling fertilizers would allow Spain to have minimum capacities), all mechanisms will be analyzed to provide an end-to-end assessment

Methodology for the selection of interventions that could increase the resilience of the supply chain in Spain

This resilience mechanism will be covered in Deliverable 9

Difficulty of

Resilience mechanisms		Type of intervention		intervention	
Preliminary lever	0	Alternative sources of supply		Verify and drive alternative import sources	Low
	1*	Creation of capacities that allow a rapid increase of production in a possible crisis situation		Develop ever-warm production capacities to cope in case of crisis	
Minimum capacities mechanisms	2	Cost effective/efficient storage of the product		Stockpiling	
	3	Last-resource actions to build national capacities		Develop new domestic production capacity	High
Possible complementary interventions		Other mechanisms to increase resilience		Stress testing, finding substitutes, gaining visibility of tier-2 and tier-3 suppliers1	

Diversification could allow a reduction of ~4B€ in net imports of high/ medium risk products

DETAILEX NEXT

Approach

A product is considered diversifiable in case that its exports' global distribution is more favorable (i.e. more secure) than Spain's imports distribution for that product

For every diversifiable product, it is assumed that a profile similar to that of global exports (in terms of risk of origin and concentration) is achievable

Res	ults		
		Number of products, #	Total net imports, M€
A	Products that become low risk	18	3.800
В	Products that continue being high and medium risk ¹	47 ²	5.300 ²
		65 ²	9.100 ²

1. For some of them it is possible to diversify, but the risk is not reduced enough to be placed in the low-risk area of the matrix

2. Excludes 4 products (oil and derivatives and natural gas) worth 33B€

A Products that become low risk after diversification (1/2)

NOT EXHAUSTIVE Critical product	Consumption at risk, M€	Main countries from which Spain currently imports	Countries from which to promote further imports ²
Insulated electric conductors	1.262	* (82%)	
Heterocyclic compounds; n.e.c. in headings no. 2933	1.127	ND ¹ (33%) + (31%) (14%)	
Zinc ores	726	(30%) (14%)	
Heterocyclic compounds; lactams	133	+ (77%)	
Antibiotics; n.e.s.	119	ND ¹ (30%) (26%)	
Kaolin	106	(64%)	
Glands; heparin	78	(35%) (24%) (17%)	
Rubber; vulcanized	69	(64%) (15%)	
Aircraft and spacecraft; under-carriages	45	(38%) (24%) (17%)	•
Fertilizers, mixtures of urea and ammonium	29	(56%)	— —
Heterocyclic compounds; containing pyrimidine, piperazine or nucleic acids	26	+ (32%) (30%) (21%)	- •

1. Countries not determined

2. Based on analysis of global exports

Source: UN Comtrade, DataComex

A Products that become low risk after diversification (2/2)

NOT EXHAUSTIVE Critical product	Consumption at risk, M€	Main countries from which Spain currently imports	Countries from which to promote further imports ²
Hormones; adrenal cortical hormones	15	(52%) (25%)	
Prostaglandins, thromboxane and leukotrienes	11	(81%)	
Heterocyclic compounds; n.e.c. in headings no. 2933.1-7	10	+ (47%) ND ¹ (21%) (20%)	☆
Heterocyclic compounds; imidazole or hydantoin	6	(58%) (16%) (14%)	
Microscopes, compound optical	4	(37%) (25%)	
Centrifuges; cream separators	O	(38%) C • (21%) (16%)	
Allobarbital (INN), amobarbital (INN), barbital (INN), butalbital (INN), etc.	0	(55%) (34%)	
TOTAL (18 products)	~3.800		

1. Countries not determined

2. Based on analysis of global exports

B Products that continue being high or medium risk after diversification

1. Does not include ~150M€ of consumption at risk that can be diversified

2. Other than antibiotics

Out of these products, the minimum capacities mechanisms will be analyzed in depth for one product category per strategic sector

Product categories to be considered for minimum capacities mechanisms

Strategic sector	Product category to be analyzed	Rationale	
Energy	B1 Batteries	 Sustainable substitute for fossil fuels (e.g., oil for EV¹) 	
		 Global demand is highly increasing – expected to x7 from 2022 to 2030² 	These product categories will be
Defense	B2 Printed circuits	 Essential role in telecommunications (among others), key in the defense sector 	analyzed in-depth for all minimum capacities mechanisms
		 Product is object of concern due to China's huge dominance 	However, in practice,
Health	B3 Antibiotics	 Representative example of a class of medicaments 	be paid to the difficulty of implementation, costs and potential blocks before choosing
Agriculture	B4 Fertilizers	 Essential for improving plant growth and yields 	the preferred mechanism
		 Increasing importance as population continues growing 	

1. Electric vehicles

2. Considers lithium-ion batteries. Source: Battery 2030: Resilient, sustainable, and circular (McKinsey & Company, January 2030)

Contents

- 1. [RECAP] Deliverable 3 results
- 2. National consumption at risk approach
- 3. Resilience mechanisms framework
- 4. Application of resilience mechanisms framework: Preliminary lever

5. Application of resilience mechanisms framework: Minimum capacities

Executive Summary – Application of resilience mechanisms framework: Minimum capacities

- Once diversification analysis has been carried out, products that continue being high or medium risk must be considered for minimum capacities mechanisms (i.e., ever-warm lines, stockpiling and/or domestic production)
- As explained in the previous section, 4 product categories (batteries, printed circuits, antibiotics and fertilizers) are the object of the minimum capacities mechanisms assessment in this section due to their relevance in 4 strategic sectors (Energy, Defense, Health and Agriculture respectively)
- In relation to stockpiling, it has been concluded that both antibiotics and fertilizers can be stockpiled, while storing batteries and/ or printed circuits seems to be technically difficult and highly costly
- Regarding domestic production, the analysis includes:
 - Overview of fundamentals: summary of product description, types and main trends
 - Dependency results and market assessment:
 - Identification of specific products within the product category: e.g., urea fertilizer within 'Fertilizers' product category
 - Adjustment of criticality of some products (e.g., chloramphenicol antibiotic was initially considered a critical product of high risk according to methodology, but expert input suggests excluding it as its use is decreasing)
 - Overview of main global exporters and Spain's importers
 - Calculation of costs (Capex and Opex) that would be necessary to cover 100% of national consumption at risk. Results are:
 - Batteries: CAPEX of ~3.300-4.600 M€ and annual OPEX of ~4.800-7.300 M€

- Printed circuits: building of domestic production seems unlikely due to the specificities of the manufacturing process– other resilience mechanisms should be considered

- Antibiotics: TBD
- Fertilizers: CAPEX of ~2.100-2.500 M€ and annual OPEX of ~500-700 M€

Methodology for the selection of interventions that could increase the resilience of the supply chain in Spain

This resilience mechanism will be covered in Deliverable 9

Difficulty of

Resilience mechanisms		Type of intervention		intervention	
Preliminary lever	0	Alternative sources of supply		Verify and drive alternative import sources	Low
	1*	Creation of capacities that allow a rapid increase of production in a possible crisis situation		Develop ever-warm production capacities to cope in case of crisis	
Minimum capacities mechanisms	2	Cost effective/efficient storage of the product		Stockpiling	
	3	Last-resource actions to build national capacities		Develop new domestic production capacity	High
Possible complementary interventions	U	Other mechanisms to increase resilience		Stress testing, finding substitutes, gaining visibility of tier-2 and tier-3 suppliers1	

Antibiotics and fertilizers could be stored at public or private facilities to increase resilience against supply chain disruptions

Product	Technical feasibility	Cost	overall feasibility
B1 Batteries	 High obsolescence rate due to a short shelf life (<3 months) High risk of accidents – release of flammable gases from batteries carries risk of explosion 	 High Self-discharge occurs when storing batteries continuous charging is required to maintain maximum capacity No existing facilities or competitive advantage to leverage 	×
B2 Printed circuits	 High obsolescence rate due to a short life span (3 years from design to EOL¹) Very delicate - semiconductors must be stored in dedicated areas with controlled temperature, vibrations and static electricity levels 	 High Required investment to create dedicated facilities and monitor stockpile is very high Technology players can leverage existing facilities and competitive advantage (e.g., Huawei, Toyota, have chips stockpiles) but public incentives must meet the cost requirements 	×
B3 Antibiotics	 High Antibiotics can be stored for a long time (e.g., tetracycline has a shelf life of ~4 years if stored at -20C) Many EU countries have already created dedicated medicines stockpiles 	Mid • EU initiatives dedicated to the creation and funding of medical stockpiles can be leveraged. For example, RescEU stockpiles are owned and hosted in Member States and co-financed by the EU Commission	
B4 Fertilizers	High Fertilizers can be stored for ~1 year at room temperature	Low • No extraordinary conditions or facilities are required for storage	\checkmark
1. End of Life			27

Stockpiling

Methodology for the selection of interventions that could increase the resilience of the supply chain in Spain

This resilience mechanism will be covered in Deliverable 9

Difficulty of

Resilience mechanisms		Type of intervention		intervention	
Preliminary lever	0	Alternative sources of supply		Verify and drive alternative import sources	Low
	1*	Creation of capacities that allow a rapid increase of production in a possible crisis situation		Develop ever-warm production capacities to cope in case of crisis	
Minimum capacities mechanisms	2	Cost effective/efficient storage of the product		Stockpiling	
	3	Last-resource actions to build national capacities		Develop new domestic production capacity	High
Possible complementary interventions	U	Other mechanisms to increase resilience		Stress testing, finding substitutes, gaining visibility of tier-2 and tier-3 suppliers1	

The +5Bn€ of imports that continue being high or medium risk after diversification can be categorized in 6 different groups

1. Includes cuclic amides, phenol, allorbabital, glycosides and cortisone hormone

2. Does not include ~150 M€ of consumption at risk that can be diversified

Domestic production – Batteries

Overview of batteries fundamentals Dependency results and market assessment Development of domestic production

BOverview of batteries fundamentals

$-\Box$	
니브	
	=
Iп	<u> </u>
1 -	_

What are batteries?

Devices that convert chemical energy into electric energy by chemical reactions

Why are batteries so important?

Batteries are a sustainable and efficient solution to fossil fuels used in mobility and energy storage

- What types of batteries are there?
- Batteries can be classified into 3 different groups: lithium-ion, lead acid and others

Source: McKinsey Battery Insights, Expert Interviews, Supply chain analysis and material demand forecast in strategic technologies and sectors in the EU – A foresight study

OVERVIEW OF FUNDAMENTALS – BATTERIES

BiThere are three main types of batteries, but only lithium-ion batteries are considered critical due to their high energy density and use in critical areas of mobility and storage

Lead

acid

Others

Β

Li-lon batteries and particularly LFP, NMC and NCA types – are the dominating solution used in the critical areas of mobility and storage

Lithium-ion

Focus of this document Typically used Technically feasible

OVERVIEW OF FUNDAMENTALS – BATTERIES

^BWithin lithium-ion batteries, NMC and LFP are expected to dominate the market in the coming years

____Key takeaways

- There are different NMC cells e.g., NMC 9.5.5, NMC 8.1.1, NMC 7.3.0 which represent the share of materials in the cathode
- LMFP, lithium manganese iron phosphate and LMNO lithium manganese nickel oxide have potential to be an optimal compromise between NMC and LFP Densidad LMFP LMNO

Source: McKinsey Battery Insights

OVERVIEW OF FUNDAMENTALS – BATTERIES

^BAs a result, many European countries have announced the creation of NMC and LFP battery plants

EU cell plant announcements up to 2030, in GWh

1. Estimation based on project financing, announced partnership with upstream and downstream supply chain and company's intellectual property

Source: McKinsey Battery Insights, Press search
Domestic production – Batteries

Overview of batteries fundamentals Dependency results and market assessment Development of domestic production B After applying our methodology, 4 types of batteries have been identified as critical and with high or medium risk of supply for Spain

Process followed for each product:

Identified as critical

- Assigned high or medium supply risk
- Calculated potential of diversification, which is not enough as resilience mechanism due to worldwide market structure

Critical batteries of high/ medium risk	HS6 code
1 Cells and batteries; primary, manganese dioxide	850610
2 Cells and batteries; primary, silver oxide	850640
3 Electric accumulators; nickel-iron, including separators	850740
4 Electric accumulators; lithium-ion, including separators	850760

B However, we have adjusted the dependency methodology results for batteries to incorporate forward-looking expert input

Pro	ocess	Results	\bigotimes	Not considered for minimum capacities assessment Considered for minimum capacities assessment	Focus next
Pro batt	cess followed for teries:	Batteries	Critical and H/M ² risk according to methodology?	Expert based adjustment	Final result
All types of batteries identified as critical in principle	1 Cells and batteries; primary, manganese dioxide	YES	 Mainly used in wristwatches and calculators Non-rechargeable 	×	
♥ A m b d	assigned high or nedium supply risk ased on ependency and	2 Cells and batteries; primary, silver oxide	YES	 Mainly used in watches, photoelectric exposure devices and hearing aids Non-rechargeable 	×
or an of	rigin of imports, nd applied potential f diversification ¹	3 Electric accumulators nickel-iron, including separators	; YES	 Mainly used in railroad signaling, trucks/forklifts and mines 	×
Ir ir m	ncorporated expert nput on battery narket and outlook	4 Electric accumulators lithium-ion, including separators	; YES	 Global demand is highly increasing – expected to x7 from 2022 to 2030^{3,} with mobility as the main driver 	

1. Potential of diversification not enough as a resilience mechanism due to worldwide market structure

2. High or medium risk

3. Source: Battery 2030: Resilient, sustainable, and circular (McKinsey & Company, January 2030)

B Lithium-ion batteries present a highly concentrated market, with China being the main worldwide exporter

Products	Concentration assessment	Key worldwide exporters ¹ , 2018-2021	Origin of imports (Spain), 2018-2021
4 Electric accumulators; lithium-ion, including separators	Highly concentrated market – China exports ~40% of product globally	 China (39%) Republic of Korea (11%) 	 China (47%) USA (11%) Germany (10%)

Domestic production – Batteries

Overview of batteries fundamentals Dependency results and market assessment Development of domestic production

BOVERVIEW of Spain's national capacities on lithium-ion batteries

Ongoing projects and year of start of operations

- There are currently 5
 factories under
 construction, with a total
 capacity of ~110GWh
 expected by 2027
- Spain's 2027 demand is expected to be ~50GWh
- Spain-based companies (Phi4tech and Basquevolt) only represent 22GWh (20% of total expected capacity)

^{B1}While Spain is expected to cover most of the LFP batteries demand, it is expected to meet only ~40% of 2026-2030 NCM batteries demand

Spanish LFP battery supply¹ and demand² 2026-2030, GWh

1. Expected effective supply based on public announcements

2. Excluding consumer electronics demand

Source: McKinsey Battery Insights, Team analysis

DOMESTIC PRODUCTION - BATTERIES

^BInitial and annual operating costs for the batteries factories necessary to cover the lack of offer in Spain

4 Electric accumulators; lithium-ion, including separators

		NMC	LFP
Key raw materials		Lithium, Iron, Manganese	, Aluminum, Cobalt and Nickel
Consumption to cover, GWh/year		57	4
CAPEX (Initial cost)	Mill. € / GWh	55-75	55-75
(Mill. € to cover 100% of imp. net at risk	3.100- 4.300	200-300
OPEX (Annual	Mill. € / GWh / year	80-120	80-120
operating cost)	Mill. € / year to cover 100% of imp. net at risk	4.500- 6.800	300-500
Construction time		3	years

Additionally, it would be necessary to secure agreements with key *input* producers from lowrisk countries in the long term (*detail below*)

Note 1: In case of wanting to calculate CAPEX to cover only a part of the imports at risk, economies of scale and other factors that may affect should be considered Note 2: This scenario describes the largest investment needed as it considers factory building from scratch. Other methods such as (e.g., creating *ever-warm* lines) would have a lower cost

B Additionally, securing access to the different materials used in Li-Ion batteries is critical

Type of battery	Cathode material	Overview	Reg	ions of m	nain r	reserves
LFP	3 Lithium 6.94	Lithium is part of the cathode in LFP, Lithium-iron phosphate batteries. Of the total lithium demand in 2030 batteries are expected to account for >90%	*	Australia Chile	*)	China Argentina
	26 Fe Iron 56.845	Iron is used in the LFP, Lithium-iron phosphate cathode. It is an abundant resource and make up approx. half of the material in the cathode	*	Australia India	♦	Brazil China
	25 Min Manganese 54.93	Manganese is the material used in NMC, Nickel Manganese Cobalt cathode chemistry and is one of the most abundant resources	** ···	Australia India	*)	China Gabon
NMC	13 Aluminium 26.98	Aluminum is part of the NCA, Nickel Cobalt Aluminum cathode chemistry and is derived from Bauxite ore considered an abundant resource	*	Australia Guinea	*	China Brazil
and NCA	27 Coo 58.93	Cobalt is used in the NMC and the NCA cathode and is one of the more debated materials due to its social responsibility challenges		Congo	XX XX *	Australia
	28 Nickel 58.69	Nickel, specifically Nickel class 1 is one of the materials in the NMC and the NCA cathode, and represent largest share of material in the cathode		Indonesia Russia	**	Australia Brazil

^BSpain should also increase resiliency on key battery input materials

Products	Concentration assessment	Key worldwide exporters ¹ , 2018- 2021	Origin of imports (Spain), 2018-2021	Covered by CRMA
3 Lithium 6.94	Concentrated market – 3 players export ~ 50% of the total product	China (32%), USA (15%) and Singapore (11%)	France (19%), China (19%) and Germany (10%)	
26 Fe Iron 56.845	Concentrated market – 2 players export ~85% of the total product	Australia (63%) and Brazil (22%)	Brazil (62%) and Canada (28%)	×
25 Manganese 54.93	Highly concentrated market – S. Africa exports ~80% of the total product	South Africa (80%)	South Africa (51%) and Gabon (37%)	
13 Aluminium 26.98	Concentrated market – 4 players export ~ 80% of the total product	India (39%), Canada (14%), Russia (14%) and Australia (10%)	Mozambique (42%), United Kingdom (14%) and Bahrein (11%)	
27 Cobalt 58.93	Highly Concentrated market – Congo exports ~ 95% of the total product	Democratic Republic of the Congo (95%)	United Kingdom (50%) and Netherlands (41%)	
28 Nickel 58.69	Concentrated market – 3 countries export +60% of the total product	Philippines (27%), Zimbabwe (22%) and Indonesia (12%)	Data non available	

The +5Bn€ of imports that continue being high or medium risk after diversification can be categorized in 6 different groups

1. Includes cuclic amides, phenol, allorbabital, glycosides and cortisone hormone

2. Does not include ~150 M€ of consumption at risk that can be diversified

Domestic production – Printed circuits

Overview of printed circuits fundamentals Dependency results and market assessment Development of domestic production OVERVIEW OF FUNDAMENTALS – PRINTED CIRCUITS

B2 Overview of printed circuits fundamentals

What are printed circuits?

Boards to which integrated circuits (i.e., million of semiconductors combinations) are soldered

Why are printed circuits so important?

Printed circuits can be found in almost every electronic device

What types of printed circuits are there?

Printed circuits can be classified into several types according to semiconductors used, which will be the focus of this document

Printed circuits are a combination of millions of extrinsic semiconductors, which will be the focus of this document

Silicon based extrinsic semiconductors are most used in the semiconductor industry Other semiconductors such as Gallium Arsenide (GaAs) are used for specific applications

Focus of this

OVERVIEW OF FUNDAMENTALS – PRINTED CIRCUITS

Before diving into semiconductors, it is important to understand conductors and insulators

Device	Description
Conductors	Materials which allow free flow of current (and electrons). For example, metals (e.g., copper wire used in common electrical fittings, gold wire)
Insulators	Materials which always block current flow (e.g., wood, pure water)
Semiconductors	Materials which can act as both conductor and insulator . Common semiconductor materials include Silicon (Si) and Germanium (Ge)
Why are se The electric voltage or b current	miconductors important? cal conductivity of semiconductor materials can be modulated (e.g., by applying y altering chemical composition) thus providing a way to control flow of electrical

OVERVIEW OF FUNDAMENTALS – PRINTED CIRCUITS

^{B2}Semiconductor industry growth is slowing down as the industry matures

USD Billions

SOURCE: IC Insights, IHS (2020)

OVERVIEW OF FUNDAMENTALS - PRINTED CIRCUITS

^{B2}The overall growth in the global semiconductor market is driven by the automotive, data storage, and wireless industries

Global semiconductor market value by vertical, indicative, \$ billion

OVERVIEW OF FUNDAMENTALS – PRINTED CIRCUITS

^{B2}In the past decade, the Asia-Pacific region has become the global focus of semiconductor sales

Note: Numbers may not add up due to rounding

B2Europe has already taken steps towards greater autonomy in the manufacturing of semiconductors

Domestic production – Printed circuits

Overview of printed circuits fundamentals Dependency results and market assessment Development of domestic production After applying our methodology, printed circuits have been identified as critical and with high or medium risk of supply for Spain

Process followed for each product: Identified as critical Assigned high or medium supply risk Calculated potential of diversification, which is not enough as resilience mechanism due to worldwide market structure

Critical circuits of high/ medium risk	HS6 code
1 Circuits; printed	853400

¹ We have adjusted the dependency methodology results for printed circuits to incorporate forward-looking expert input

Process	Results		Not considered for minimum capacities assessment	Considered for minimum capacities assessment
Process followed for semiconductors:	Semiconductor-related products	Critical and H/M ² risk according to methodology?	Expert based adjustment	Final result
All semiconductor- related products identified as critical	1 Processors and controllers	NO	Products not identified as	
in principle	2 Memories	NO	according to methodology	
Assigned high or medium supply risk based on	3 Amplifiers	NO	due to high relevance of re-exports – however, they should be considered	
dependency and origin of imports, and	4 Other integrated circuits elements	NO	<i>critical and high risk</i> , as China and Hong Kong	
applied potential of diversification ¹	5 Parts of electrical goods	NO	dominate the exports market (detailed on next slide)	
Incorporated expert input on semiconductor market and outlook	6 Circuits; printed	YES	N/A	

1. Potential of diversification not enough as a resilience mechanism due to worldwide market structure

2. High or medium risk

^{B2}Semiconductors have a very concentrated market, where East Asian countries concentrate global exports (1/2)

Products		Concentration assessment	Key worldwide exporters ¹	Origin of imports (Spain)	
1	Electronic integrated circuits; processors and controllers	Highly concentrated market - 3 countries export ~60%	 China and Hong Kong (35%) Singapore (11%) Malaysia (10%) 	 Germany (29%) Japan (17%) Netherlands (15%) 	
2	Electronic integrated circuits; memories	Highly concentrated market - 2 countries export ~75%	 China and Hong Kong (43%) South Korea (31%) 	 Germany (21%) Netherlands (19%) Japan (17%) 	
3	Electronic integrated circuits; amplifiers	Highly concentrated market - China and Hong Kong export ~50% and, with Singapore and US, ~80%	 China and Hong Kong (47%) Singapore (19%) USA(13%) 	 Netherlands (30%) USA (19%) Germany (17%) 	

^{B2}Semiconductors have a very concentrated market, where East Asian countries concentrate global exports (2/2)

Products		Concentration assessment	Key worldwide exporters ¹	Origin of imports (Spain)	
4	Electronic integrated circuits; n.e.c.1 in heading 8542	Highly concentrated market - 3 countries export ~60%	 China and Hong Kong (41%) Singapore (20%) 	 Germany (34%) Netherlands (19%) China (12%) 	
5	Electronic circuits and microassemblies; parts of the electrical goods of 8542	Highly concentrated market - 3 countries export ~60%	 Malaysia (26%) China and Hong Kong (24%) Japan (17%) 	 Germany (33%) France (21%) China (13%) 	
6	Circuits; printed	Highly concentrated market - 3 countries export ~60%	 China and Hong Kong (59%) South Korea (11%) 	• China (59%)	

^{B2}Analysis of Spain's world exports and imports for critical semiconductors inputs

In addition, it	Products	Concentration assessment	Key world exporters ¹ , 2018- 2021	Origin of imports (Spain), 2018-2021	Covered by CRML ²
necessary in the long term to secure	Silicon	Concentrated market – 3 countries export +70%	China (47%), Norway (13%) and Brazil (12%)	China (52%), Netherlands (16%) and Germany (10%)	
key input producers in low-risk countries to	Germanium		Data non available		
complement industrial production capacity	Chemical elements; doped for use in electronics	Concentrated market – 2 countries export ~50%	Japan (27%) and China (21%)	China (28%), Poland (21%) and Hungary (11%)	×

Exporters with a market share of global exports greater tan 10% 1.

2. Critical Raw Materials List published in 2023 by the European Commission

Domestic production – Printed circuits

Overview of printed circuits fundamentals Dependency results and market assessment Development of domestic production

DOMESTIC PRODUCTION - PRINTED CIRCUITS

^{B2}While it is highly complicated to build national capacities on semiconductors, Spain could take other actions to increase resilience

Difficulty in building national capacities from scratch...

High precision is required and hence chips must be bult by specific machinery

Clean environments are needed, as even a single speck of dust can damage a chip

Expensive facilities, requiring investment up to ~25 B€ due to e.g., machinery, electrical and hydraulic installations

Long manufacturing times – 3 months to engrave and transform wafers into semiconductors and years to get new factories ...but Spain can take measures to reduce dependency on high-risk countries

2 Participate in European Chips Act initiatives to gain independence in chips manufacturing

Intensify relationship with semiconductors producers

Products that continue being high or medium risk after diversification

1. Does not include ~150M€ of consumption at risk that can be diversified

2. Other than antibiotics

B3 Domestic production – Antibiotics

Overview of antibiotics fundamentals Dependency results and market assessment Development of domestic production

BOverview of antibiotics fundamentals

┍┍⊂	\Box
	= 1
	=
	= 1

What are antibiotics?

Medicines used to treat or prevent some types of bacterial infection by killing them or preventing them from spreading

Why are antibiotics so important?

Antibiotics treat infections and have saved millions of lives throughout history

What types of antibiotics are there?

Antibiotics can be classified into 32 different classes (detailed next)

B3Antibiotics value chain

Logistics

--- Procurement

OVERVIEW OF FUNDAMENTALS – ANTIBIOTICS

BAccording to HERA, critical antibiotics can be categorized in 32 different classes and comprise +95% of the EU antibiotic market

Classes of antibiotics

Focus of this document (detail on slide 63)

÷

- 1. Narrow-spectrum penicillins (penicillin G)
- 2. Aminopenicillins, without & lactamase inhibitors (ampicillin)
- 3. Aminopenicillins with ß-lactamase inhibitors (ampicillin/sulbactam)
- 4. Ant-staphylococcal penicillins (flucloxacillin)
- 5. Carboxy-/Ureidopenicillins with ß-lactamase inhibitors (piperacillin/tazobactam)
- 6. First/second-generation cephalosporins (cefazolin)
- 7. Third/fourth- generation cephalosporins (cefotaxime)
- 8. Fifth-generation cephalosporins (ceftobiprole)
- 9. Siderophore cephalosporins (cefiderocol)
- 10. Cephalosporins, with ß-lactamase inhibitors (ceftazidime/avibactam)
- 11. Carbapenems, without ß-lactamase inhibitors (meropenem)
- 12. Carbapenems, with ß-lactamase inhibitors (meropenem/vaborbactam)
- 13. Polymyxins (colistin)
- 14. Phosphonic acid derivates (Fosfomycin)
- 15. Substances solely used for treatment of TB (pyrazinamide)
- 16. Glycopeptides (vancomycin)

- 17. Lipopeptides (daptomycin)
- 18. Oxazolidinones (linezolid)
- 19. Macrolides (azithromycin)
- 20. Macrocycles (fidaxomicin)
- 21. Tetracyclines (doxycycline)
- 22. Eravacycline
- 23. Glycylcycline (tigecycline)
- 24. Sulfonamide-Trimethoprim derivates combinations (sulfamethoxazole- trimethoprimco-trimoxazole)
- 25. Nitroimidazole (metronidazole)
- 26. Riminophenazines (clofazimine)
- 27. Sulfones (dapsone)
- 28. Fluoroquinolones (ciprofloxacin)
- 29. Rifamycins (rifampicin)
- 30. Aminoglycosides (gentamicin)
- 31. Lincosamides (clindamycin)
- 32. Monobactams (aztreonam)

B3 Domestic production – Antibiotics

Overview of antibiotics fundamentals Dependency results and market assessment Development of domestic production B3After applying our methodology, 3 antibiotics have been identified as critical and with high or medium risk of supply for Spain

Process followed for each product: Identified as critical Assigned high or medium supply risk Calculated potential of diversification, which is not enough as resilience mechanism due to worldwide market structure

Critical antibiotics of high/ medium risk	HS6 code	
1 Antibiotics; streptomycins and their derivatives; salts thereof	294120	
2 Antibiotics; tetracyclines and their derivatives; salts thereof	294130	
3 Antibiotics; chloramphenicol and its derivatives; salts thereof	294140	

B However, we have adjusted the dependency methodology results for antibiotics to incorporate forward-looking expert input

Process	Results	(\times)	Not considered for minimum capacities assessment Considered for minimum capacities assessment	Focus next
Process followed for batteries:	Critical products	Critical and H/M ³ risk according to methodology?	Expert based adjustment	Final result
 Antibiotics identified as critical according to AEMPS¹ list of critical medicines Assigned high or medium supply risk based on dependency and origin of imports, and applied potential of diversification² Incorporated expert input on battery market and outlook 	1 Antibiotics; streptomycins and their derivatives	YES	 Low priority from a clinical standpoint Mainly used for tuberculosis Construction of facilities is not worth it – stockpiling and/ or agreement with GFD⁴ should be addressed 	h
	2 Antibiotics; tetracyclines and their derivatives	YES	 Tetracycline is an intermediate for production of doxycycline, which should be the focus 	
	3 Antibiotics; chloramphenicol and its derivatives	YES	 Old antibiotic with very severe side effects Essential only in low-incomes countries with no alternatives 	X

1. Asociación Española de Medicamentos y Productos Sanitarios

2. Potential of diversification not enough as a resilience mechanism due to worldwide market structure

3. High or medium risk

4. Global Drug Facility: UN-supported partnership which operates a globally distributed stockpiling system for humanitarian supply of tuberculosis medicines such as streptomycins

DEPENDENCY RESULTS AND MARKET ASSESSMENT - ANTIBIOTICS

^{B3}The 2 high and medium risk critical antibiotics identified belong to the groups of aminoglycosides and tetracyclines

Antibiotics present a highly concentrated market, where China concentrates +60% of global exports

Focus

Products	Concentration assessment	Key worldwide exporters	Origin of imports (Spain)
1 Antibiotics; streptomycins and their derivatives	Highly concentrated market – China concentrates ~74% global exports	 China (74%) Netherlands (11%) USA (7%) 	 Chine (65%) Netherlands (15%) France (14%)
2 Antibiotics; tetracyclines and their derivatives	Highly concentrated market – China concentrates ~62% global exports	 China (62%) Italy (9%) Portugal (6%) 	 China (86%) Germany (8%) Netherlands (3%)

B3 Domestic production – Antibiotics

Overview of antibiotics fundamentals Dependency results and market assessment

DOMESTIC PRODUCTION - ANTIBIOTICS

Balnitial and annual operating costs for the antibiotics factories necessary to cover the lack of offer in Spain

		Class of antibiotic			
		Tetracyclines	Aminoglycosides		
Key raw n	naterials	TBD	N/A		
Consump M€/ year	tion to cover,	22	1		
CAPEX (Initial cost)	M€/ ton M€ to cover 100% of net imp. at risk	TBD Preliminary –	Based on other EU countries actions, most feasible resilience solution would consist of reserving access		
OPEX (Annual operating cost)	M€/ ton/ year M€/ year to cover 100% of net imp. at risk	Pending data confirmation TBD	to GDF ¹ stockpile, with an annual cost of ~700 k€ ² in case of covering 100% of net imports at risk		
Construct	ion time	TBD	N/A		

Additionally, it would be necessary to secure agreements with key *input* producers from lowrisk countries in the long term

1. Global Drug Facility: UN-supported partnership which operates a globally distributed stockpiling system for humanitarian supply of tuberculosis medicines such as streptomycins

2. Assumes daily doses of 0,07 per 1.000 people (*Plan Nacional Resistencia Antibióticos*, data from 2021) and dose price of 0,57€ (Global Drug Facility catalogue)

Note 1: In case of wanting to calculate CAPEX to cover only a part of the imports at risk, economies of scale and other factors that may affect should be considered Note 2: This scenario describes the largest investment needed as it considers factory building from scratch. Other methods such as (e.g., creating *ever-warm* lines) would have a lower cost

Products that continue being high or medium risk after diversification

1. Does not include ~150M€ of consumption at risk that can be diversified

2. Other than antibiotics

Domestic production – Fertilizers

Overview of fertilizers fundamentals Dependency results and market assessment

B4Overview of fertilizers fundamentals

ᄃ	\Box
	=
	=
	=

What are fertilizers?

Chemical or natural substances added to soil or land to provide nutrients for plants to grow and thrive

Why are fertilizers so important?

Antibiotics treat infections and have saved millions of lives throughout history

What types of fertilizers are there?

Fertilizers can be classified into 3 different groups according to the main input used: nitrogen (N), phosphate (P) or potash (K)

OVERVIEW OF FUNDAMENTALS – FERTILIZERS

B4 Fertilizers are classified in 3 main types according to the main input used for their production

Domestic production – Fertilizers

Overview of fertilizers fundamentals Dependency results and market assessment

After applying our methodology, 6 fertilizers have been identified as critical and with high or medium risk of supply for Spain

Process followed for each product:

Identified as critical

Assigned high or medium supply risk

Calculated potential of diversification, which is not enough as resilience mechanism due to worldwide market structure

Fertilizer products	HS6 code
1 Fertilizers; nitrogenates, urea	310210
2 Fertilizers; nitrogenous, sodium nitrate	310250
3 Fertilizers; nitrogenous, double salts and mixtures of calcium nitrate and amm. nitrate	310260
4 Fertilizers; phosphatic, superphosphates	310311
5 Fertilizers; diammonium hydrogenorthophosphate	310530
6 Fertilizers; ammonium dihydrogenorthophosphate	310540

^{B4}The 6 high and medium risk critical fertilizers identified belong to the groups of nitrogen and phosphate fertilizers

Critical high and medium risk products	Nitrogen fertilizers	P Phosphate fertilizers
1 Fertilizers; nitrogenates, urea	\checkmark	
2 Fertilizers; diammonium hydrogenorthophosphate		\checkmark
3 Fertilizers; ammonium dihydrogenorthophosphate		\checkmark
4 Fertilizers; nitrogenous, double salts and mixtures of calcium nitrate and amm. nitrate	\checkmark	
5 Fertilizers; phosphatic, superphosphates		
6 Fertilizers; nitrogenous, sodium nitrate	\checkmark	

DEPENDENCY RESULTS AND MARKET ASSESSMENT - ANTIBIOTICS

B4 Fertilizers present a highly concentrated market, with countries such as China, Russia or Morocco playing an important role (1/2)

Products		Concentration assessment	Key worldwide exporters ¹	Origin of imports (Spain)
1	Mineral or chemical fertilizers; nitrogenates, urea	Concentrated market – 3 countries export ~40% and 12 countries ~80%	 Russia (16%) China (12%) Saudi Arabia (11%) 	 Argel (30%) Egypt (24%) Russia (10%)
2	Fertilizers, mineral or chemical; diammonium hydrogenorthophosphate	Highly concentrated market – 2 countries concentrate ~65% of global exports	China (43%)Morocco (21%)	 Morocco (65%)
3	Fertilizers, mineral or chemical; ammonium dihydrogenorthophosphate	Highly concentrated market – 4 countries concentrate ~90% of global exports	 Morocco (25%) China (23%) Russia (20%) USA (20%) 	 Morocco (37%) Belgium (30%) Russia (13%) China (10%)

B4 Fertilizers present a highly concentrated market, with countries such as China, Russia or Morocco playing an important role (1/2)

Products		Concentration assessment	Key worldwide exporters ¹	Origin of imports (Spain)	
4	Fertilizers; nitrogenous, double salts and mixtures of calcium nitrate and amm. nitrate	Highly concentrated market – 2 countries concentrate +50% of global exports	China (39%)South Africa (14%)	Norway (68%)Portugal (15%)	
5	Fertilizers, mineral or chemical; phosphatic, superphosphates	Highly concentrated market – 3 countries concentrate +80% of global exports	 China (33%) Morocco (32%) Israel (16%) 	Morocco (58%)Israel (27%)	
6	Fertilizers; nitrogenous, sodium nitrate	Highly concentrated market – 2 countries concentrate +50% of global exports	Chile (45%)China (10%)	Chile (84%)Germany (15%)	

Domestic production – Fertilizers

Overview of fertilizers fundamentals Dependency results and market assessment

Although Spain imports most of its fertilizers there is productive capacity in the country that could be reinforced

- Productive capacity refers
 to production of any
 fertilizer
- Madrid is the province with highest fertilizer production, with Fertiberia generating ~30% of national revenue coming from fertilizers sales
- Production is
 decentralized, as Fertiberia
 has ~15 production facilities
 and rest of companies are
 distributed throughout the
 country

Note 2: In case of calculating CAPEX for covering only a part of net imports at risk, other factors such as economies of scale must be included

Nota 3: This scenario shows the highest possible investment, as it considers greenfield time and costs

B4 Building national capacities to cover high and medium risk imports would entail +2B€ CAPEX and a +500M€ annual OPEX

ESTIMATIONS BASED ON OUTSIDE-IN AVAILABLE INFO

		1 Fertilizers; nitrogenous, urea	2 Fertilizers; diamm. hydro- genorthoph.	3 Fertilizers,; amm. dihydro- genorthoph.	4 Fertilizers; nitrogenous, double salts	5 Fertilizers; phosphatic, superph.	6 Fertilizers; nitrogenous, sodium nitrate	TOTAL
Key raw	materials	Natural gas [©]	Phosphate [©] rock	Phosphate [®] rock	Natural gas [®]	Phosphate [®] rock	Natural gas [®]	
Net imp	orts at risk, M€	223	101	41	21	2	1	389
CAPEX	€/ TN	~1.900	~2.600	~2.600	~1.900	~2.600	~1.900	
	M€ to cover 100% of net imports at risk	~1.200- 1.300	~550- 650	~150- 250	~200- 300	~10-20	~5-10	~2.100- 2.400
OPEX	€/ TN/ year	~600	~700	~700	~600	~400	~600	
	M€/ year to cover 100% of net imports at risk	~300- 400	~100- 200	~25-75	~50-70	~1-3	~1-2	500-700
Building	g time			3-4 ує	ears			

Detailed next

85

DOMESTIC PRODUCTION – FERTILIZERS

Analysis of world exports and imports from Spain for critical fertilizer inputs

Additionally, it would be	Products	Concentration assessment	Key world exporters ¹ , 2018- 2021	Origin of imports (Spain), 2018-2021	Covered by CRML ²
necessary in the long term to ensure agreements with key input producers from	Liquefied natural gas	Concentrated market - 3 competitors export ~ 60% of total product	Australia (32%), USA (16%) and Qatar (12%)	France (19%), China (19%) and Germany (10%)	×
low-risk countries that complement industrial production capacity	Phosphate rock	Concentrated market - 3 competitors export ~85% of total product	Israel (44%), Kazakhstan (29%) and Vietnam (12%)	Morocco (59%), Israel (10%) and Egypt (10%)	

1. Exporters with a market share greater than 10%

2. Critical Raw Materials List published in 2023 by the European Commission

B1 B2 B3 B4 Minimum capacities – Conclusions

Summary of conclusions for batteries, printed circuits, antibiotics and fertilizers

Pro	oduct	Stockpiling	Domestic production	Conclusion
B1	Batteries	×	CAPEX1, M€ OPEX1, M€/ year Building time, years 7.000- 500-800 3	Building national batteries
			11.000	factories is a key line action to consider
B2	Printed circuits	×	N/A (Spain is not able to build domestic production of printed circuits/ semiconductors)	Building national capabilities may be costly and technically difficult
B 3	Antibiotics		TBD TBD ¹ TBD	Stockpiling ² and building national factories are main lines of action to consider
B4	Fertilizers		2.100- 2.400 500-700 3-4	Stockpiling and building national factories are main lines of action to consider

- 1. Estimated for scenario where 100% of consumption at risk is covered
- 2. Includes ~1 M€ of annual cost of reserving access to GDF stockpiling for streptomycins

3. Includes both national stockpiling and GDF stockpiling

Funded by the European Union Find out more about the Technical Support Instrument:

